Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level

نویسندگان

  • Victoria Savalei
  • Mijke Rhemtulla
چکیده

In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data-that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Theory GLS Estimator for Missing Data: An Application to Item-Level Missing Data and a Comparison to Two-Stage ML

Structural equation models (SEMs) can be estimated using a variety of methods. For complete normally distributed data, two asymptotically efficient estimation methods exist: maximum likelihood (ML) and generalized least squares (GLS). With incomplete normally distributed data, an extension of ML called "full information" ML (FIML), is often the estimation method of choice. An extension of GLS t...

متن کامل

SEM with Missing Data and Unknown Population Distributions Using Two-Stage ML: Theory and Its Application.

This article provides the theory and application of the 2-stage maximum likelihood (ML) procedure for structural equation modeling (SEM) with missing data. The validity of this procedure does not require the assumption of a normally distributed population. When the population is normally distributed and all missing data are missing at random (MAR), the direct ML procedure is nearly optimal for ...

متن کامل

An Effective Technique of Multiple Imputation in Nonparametric Quantile Regression

In this study, we consider the nonparametric quantile regression model with the covariates Missing at Random (MAR). Multiple imputation is becoming an increasingly popular approach for analyzing missing data, which combined with quantile regression is not well-developed. We propose an effective and accurate two-stage multiple imputation method for the model based on the quantile regression, whi...

متن کامل

Scale Efficient Targets in Production Systems With Two-stage Structure Under Imprecise Data Assumption

Traditional data envelopment analysis (DEA) models evaluate two-stage decision making unit (DMU) as a black box and neglect the connectivity may exist among the stages. This paper looks inside the system by considering the intermediate activities between the stages where the first stage uses inputs to produce outputs which are the inputs to the second stage along with its own inputs. Additional...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2017